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Abstract
The configuration interaction method has been widely used to calculate electronic excitations in
nanostructures, but it suffers from a slow rate of convergence with the number of configurations
in the basis set and from the inability to select a priori the most important configurations. The
optimized configuration interaction method presented here removes the limitations of the
conventional approach by identifying at the outset the configurations that are most relevant for
describing electronic excitations. We show that the ‘best’ configurations are remarkably
different from the configurations that one would expect on the basis of the single-particle
energy ladder, and that a small, optimized set of configurations predicts excitation energies with
accuracy comparable to that for much larger, non-optimized sets of configurations. This
approach opens the way to a new generation of configuration interaction methods where the
configurations are pre-selected using heuristic search methods.

The configuration interaction (CI) method [1] dates back to
the origins of quantum mechanics, and for many decades it
has been the primary tool to calculate the electronic states
of atoms and molecules. In this approach, the many-
body electronic wavefunctions are expanded in a set of
Slater determinants (configurations) constructed by selecting a
reference configuration and promoting one or more electrons
from occupied to unoccupied single-particle states. The
development of new iterative diagonalization algorithms and
powerful computational capabilities has made possible CI
calculations including millions of configurations. These large-
scale CI calculations provide benchmarks against which less
rigorous theories of electronic structure are being tested.

In the last decade, the CI method has been extensively
applied to calculate electronic excitations in semiconductor
nanostructures [2–11]. These studies include calculations of
excitonic energies and optical absorption spectra in quantum
dots [2, 3], excitonic fine structure [4, 5], carrier relaxation
times [6], multi-exciton recombination rates [7, 8], electron
and hole charging spectra [9, 10], and quantum entanglement
in quantum dot molecules [11]. The standard approach to CI
calculations for semiconductor nanostructures [2–11] consists
of selecting an active space of occupied and unoccupied
single-particle states, and generating all the configurations
consistent with that space. This approach, however, suffers

from serious drawbacks, that limit its accuracy and range of
applicability: (i) The CI expansion converges slowly with
the dimension of the active space, or, equivalently, with the
number of configurations. This is illustrated in figure 1(a),
which shows the convergence of the bi-exciton ground-state
energy of a 39 Å diameter CdSe quantum dot (calculated
using the semi-empirical pseudopotential method described
below) as a function of the total number of configurations.
While the effects of configuration mixing are relatively small
(<100 meV) on an absolute energy scale, the slow convergence
of the CI expansion may significantly impact the accuracy of
calculated energy differences, such as the bi-exciton binding
energy [12]. (ii) This problem is compounded by the difficulty
of identifying a priori the configurations that give the largest
contribution to the CI expansion. Figure 1(b) shows the
ex-post-facto decomposition of the bi-exciton ground state
(calculated using 119 340 configurations), as a function of the
single-particle energy of the configurations included in the CI
basis set3. We see that a few configurations that are 300 meV
or more above the lowest-energy configuration have a non-
negligible contribution to the ground-state wavefunction, while
a large number of configurations that are lower in energy do not
contribute to the ground-state wavefunction. Thus, truncating

3 In this work, the term ‘basis set’ is used to indicate the set of configurations
used to expand the many-particle wavefunctions.
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Figure 1. (a) Ground-state bi-exciton energy of a 39 Å diameter
CdSe quantum dot as a function of the total number of configurations
included in the basis set. The configurations are selected by fixing
the number of conduction states (nC = 9) and varying the number of
valence states (nV = 1–20). (b) Decomposition of the bi-exciton
ground state as a function of the single-particle energy of the
configurations in the CI basis set.

the CI expansion according to the single-particle energy of the
configurations may be wasteful, as the computational effort
scales at least quadratically with the number of configurations.
What is needed is the capability to select at the outset the most
important configurations.

A few approaches have been proposed in the quantum-
chemistry literature to select relevant configurations for CI
calculations of small molecules. Feller [13] proposed an
iterative approach where a set of reference configurations is
selected and sequentially augmented by adding single- and
double-substitution configurations that, upon diagonalization
of the CI matrix, are found to give a large contribution to the
CI ground state. Mitrushenkov [14] proposed a ‘dynamical
CI’ method where, at each step of the iterative diagonalization
procedure, only configurations that have weight larger than
a pre-assigned value are retained. Similarly, Greer [15]
suggested an iterative approach where randomly selected
configurations are added to the basis set, and unimportant
configurations are removed from the basis set. To the best
of our knowledge, none of these approaches has ever been
applied to semiconductor nanostructures, and it is likely that
such methods would be computationally very expensive for
nanostructure calculations.

In this work, we propose a method to select a priori the
most relevant configurations that describe electronic excited
states in nanostructures. For a given active space and a
given number of configurations N , we identify via heuristic
search methods the ‘best’ set of configurations, i.e. the N

configurations that minimize the energy of the electron system.
We demonstrate this method in the case of single excitons
and bi-excitons in CdSe quantum dots, and show that the
optimized configurations are different from those that what one
would expect based on the single-particle energy ladder. We
also show that a small basis set of optimized configurations
yields excitation energies with accuracy comparable to much
larger non-optimized configuration basis sets. The practical
importance of the present approach is twofold: (i) it allows
one to pre-select the configurations that are most relevant to
describe electronic excitations, and (ii) when coupled with a
robust search algorithm, it provides a computationally more
efficient alternative to standard CI calculations.

The CI method has been used in combination with several
different approaches to solve the underlying single-particle
Schrödinger equation: Single-band effective mass [16, 17]
multi-band effective mass [18], effective bond orbital
models [19], tight binding [4, 20] and semi-empirical
pseudopotentials [21]. Here we choose the plane-
wave empirical pseudopotential method, which has been
successfully used in the past to study electronic excitations in
colloidal nanocrystal [21, 22]. The single-particle Schrödinger
equation has the form:[

− h̄2

2m
∇2 + V (r)+ V̂NL + V̂SO

]
ψi (r, σ ) = εiψi (r, σ ),

(1)
where V (r) = ∑

R v(r − R) is a local pseudopotential (given
by the superposition of screened atomic potentials), V̂NL is a
non-local pseudopotential operator, and V̂SO is the spin–orbit
potential operator. The screened atomic potentials, as well as
V̂NL and V̂SO, are fitted to measured bulk transition energies,
effective masses, and deformation potentials, and to ab initio
calculated bulk wavefunctions [23]. Equation (1) is solved by
expanding the wavefunctions in a plane-wave basis set, and
using the folded-spectrum method [24] to obtain the band-edge
single-particle energies and wavefunctions. In the next step, we
construct the many-particle CI Hamiltonian:

ĤCI =
∑
i∈C

εi c
∗
i ci −

∑
j∈V

ε j d
∗
j d j + 1

2

∑
i jkl∈C

J CC
i jkl c

∗
i c∗

j clck

+ 1
2

∑
i jkl∈V

J V V
i jkl d∗

i d∗
j dldk

−
∑

ik∈V, jl∈C

(J V C
i jkl − K V C

i jkl)c
∗
i d∗

j cldk . (2)

Here c∗
i (ci) is the creation (annihilation) operator for an

electron in the conduction-band state i , d∗
i (di) is the creation

(annihilation) operator for a hole in the valence-band state
i , and V (C) denote the valence-band (conduction-band)
manifolds included in the active space. To reduce the
complexity of the problem, we diagonalize the CI Hamiltonian
separately in the subspace of single excitations (mono-
excitons), double excitations (bi-excitons), etc. The Coulomb
and exchange integrals of equation (2) are screened by the
dielectric constant ε(r, r′) of the nanostructure, as discussed
in [21]:

Ji jkl =
∑
σσ ′

∫
ψ∗

i (r, σ )ψ
∗
j (r

′, σ ′)
e2

ε(r, r′)|r − r′|
× ψk(r, σ )ψl(r

′, σ ′) dr dr′. (3)

2



J. Phys.: Condens. Matter 20 (2008) 055211 M C Troparevsky and A Franceschetti

Table 1. Single-particle energies of the first few electron and hole
states included in the active space. The letters in parenthesis denote
the dominant angular-momentum character of the corresponding
envelope functions. The energy zero is the top of the valence-band
(state h1).

Hole states Energy (eV)

h1 (s) 0.000
h2 (s) −0.029
h3 (p) −0.039
h4 (p) −0.041
h5 (p + d) −0.139
h6 (p + d) −0.146
h7 (p + d) −0.146

Electron states Energy (eV)

e1 (s) 2.350
e2 (p) 2.649
e3 (p) 2.657
e4 (p) 2.660

We describe next the optimized configuration interaction
(OCI) algorithm, which includes three steps:

(i) We start by selecting an active space consisting of the nV

highest-energy single-particle occupied levels and the nC

lowest-energy single-particle unoccupied levels.
(ii) Next, we choose the number of orbital configurations

(NOC), which will be subjected to the optimization
procedure. Each orbital configuration is defined by the
occupation numbers {pi, q j } of the single-particle energy
levels belonging to the active space. Here pi is the
number of holes in the valence-band level i and q j is
the number of electrons in the conduction-band state
j . Since each single-particle level is spin degenerate,
pi , q j = 0, 1, 2. Furthermore, since we are considering
only specific excitation levels, the number of electrons and
holes m is fixed:

∑nV
i=1 pi = ∑nC

j q j = m. The maximum
number of orbital configurations compatible with a given
active space is MOC = nVnC for a single-exciton (m = 1)
and MOC = nVnC(nV + 1)(nC + 1)/4 for a bi-exciton
(m = 2).

(iii) The set of NOC optimized configurations is then deter-
mined using a Monte-Carlo simulated-annealing search al-
gorithm [25]. Starting from an initial set of randomly se-
lected orbital configurations, {σ1, σ2, . . . , σNOC}, we con-
struct the set of Slater determinants that includes all the
spin configurations consistent with the selected orbital
configurations. The CI Hamiltonian of equation (2) is di-
agonalized in this basis set using an iterative diagonaliza-
tion algorithm to find the lowest-energy eigenstates. Next,
we randomly select one of the NOC orbital configurations,
e.g. σi , and promote one electron (or one hole) to a dif-
ferent energy level. This operation replaces the config-
uration σi with a new configuration σ new

i , while keeping
the total number of orbital configurations NOC fixed. We
then construct the set of Slater determinants correspond-
ing to the new set of orbital configurations, and diago-
nalize the CI Hamiltonian in this new basis set. This
move is accepted with probability P = e−�E/KBT , where

Figure 2. Convergence rate of the simulated-annealing algorithm
shown for a bi-exciton with NOC = 4.

�E = Enew
GS − Eold

GS is the difference between the ground-
state energies of the new and old sets of configurations,
kB is the Boltzmann constant, and T is the simulated-
annealing temperature. If the move is accepted, we re-
peat step (iii) starting from the new set of configurations
{σ1, σ2, . . . , σ

new
i , . . . , σNOC}; otherwise, a different con-

figuration σ j is randomly selected and replaced by a new
configuration σ new

j , until the move is accepted. The initial
value of the simulated-annealing temperature T is chosen
so that approximately 50% of the moves are accepted. The
temperature T is then slowly decreased until the global
energy minimum, corresponding to the ‘best’ set of NOC

orbital configurations, is found [25].

To illustrate the optimization algorithm, we consider a
CdSe quantum dot having a diameter of 39 Å. The quantum
dot is constructed by cutting out a spherical segment of
bulk CdSe in the wurtzite lattice structure. The surface Cd
and Se atoms are passivated by ligand potentials [22]. The
screened atomic potentials used in equation (1) are taken
from [23]. The Coulomb and exchange integrals (equation (3))
are screened by a distance-dependent and size-dependent
dielectric function [21]. Table 1 summarizes the band-edge
single-particle states of the quantum dot. The first electron
state (e1) has an s-like envelope function, while the next three
electron states (e2, e3, e4) have p-like envelope functions.

The convergence rate of the simulated-annealing algo-
rithm is shown in figure 2 in the case of m = 2 (bi-exciton)
and NOC = 4. The active space consists of nV = 20 valence-
band levels and nC = 9 conduction-band levels, for a total of
MOC = 9450 bi-exciton configurations. The number of possi-
ble choices for the four orbital configurations in the OCI basis
set (i.e. the dimension of the OCI search space) is 3.32 × 1014.
The initial annealing temperature is set to T0 = 0.1 eV. The
temperature is decreased every 50 steps by a factor of 0.94,
i.e. Tn+1 = 0.94 Tn . We see from figure 2 that fewer than
15 000 simulated-annealing steps are sufficient to identify the
best set of orbital configurations. Similar convergence profiles
are obtained starting from different sets of initial configura-
tions. We find that, out of 20 initial sets of randomly selected
orbital configurations, the simulated-annealing algorithm con-
verges to the same set of optimized configurations 100% of the
times.
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Table 2. Optimized and non-optimized (Aufbau) sets of orbital
configurations for the single-exciton (X) and bi-exciton (XX) ground
state. The configurations are described by the single-particle levels
occupied by the holes and the electrons. The numbers in parenthesis
are the amplitudes (in %) of the coefficients of the CI expansion.

NOC Optimized Aufbau

X

4

h1, e1 (98.5) h1, e1 (∼100)
h3, e2 (0.5) h2, e1 (<0.1)
h4, e4 (0.3) h3, e1 (<0.1)
h7, e3 (0.7) h4, e1 (<0.1)

5

h1, e1 (98.3) h1, e1 (99.9)
h3, e2 (0.5) h2, e1 (<0.1)
h4, e4 (0.3) h3, e1 (<0.1)
h13, e4 (0.7) h4, e1 (<0.1)
h7, e3 (0.2) h5, e1 (0.1)

XX

4

h1h1, e1e1 (91.7) h1h1, e1e1 (99.1)
h3h3, e1e1 (5.5) h1h2, e1e1 (<0.1)
h7h7, e1e1 (1.9) h1h3, e1e1 (<0.1)
h1h7, e1e3 (0.9) h1h4, e1e1 (0.9)

5

h1h1, e1e1 (91.8) h1h1, e1e1 (97.0)
h3h3, e1e1 (5.2) h1h2, e1e1 (<0.1)
h7h7, e1e1 (1.6) h1h3, e1e1 (<0.1)
h1h7, e1e3 (0.6) h1h4, e1e1 (0.7)
h1h7, e1e4 (0.8) h2h2, e1e1 (2.3)

The optimized sets of single-exciton and bi-exciton
configurations obtained from the simulated-annealing search
are shown in table 2 in the cases NOC = 4 and NOC = 5. For
comparison, the non-optimized sets of ‘Aufbau’ configurations
that minimize the single-particle energy are also shown in
table 2. We find that (i) the configurations in the optimized
set are different from those in the non-optimized set (see
table 2), and are largely unexpected. For example, the inclusion
of configurations where one of the electrons (or one of the
holes) is in a p-like state (e.g. e2–e4) tends to lower the CI
energy significantly, although the single-particle energy of
such configurations is quite large, as can be gleaned from
table 1. We also find (ii) that the set of NOC optimized
configurations is in general different from the set of NOC orbital
configurations that contribute the most to the full-CI (FCI)
ground-state wavefunction. For example, in the case of the
bi-exciton ground state, the set of 4 optimized configurations
includes the configuration (h1h7, e1e3) (see table 2), while
the set of 4 configurations that contribute the most to the FCI
ground state includes the configuration (h4h4, e1e1). This
result implies that the set of optimized configurations cannot
be always derived a posteriori from the knowledge of the CI
ground state. Finally, we find the that (iii) the set of NOC

optimized configurations is a subset of the NOC + 1 optimized
configurations (compare NOC = 4 and NOC = 5 in table 2),
and that the additional configuration in the NOC + 1 set often
has larger weight than some of the configurations in the NOC

set.
We now discuss the efficiency of the OCI method

compared with the conventional CI method. Note that the
OCI expansion is exact (i.e. the OCI energy coincides with
the FCI energy) when all the configurations in the active
space are included. Figure 3 shows the single-exciton and
bi-exciton ground-state correlation energy as a function of the

Figure 3. Correlation energy of the (a) single-exciton and
(b) bi-exciton ground states as a function of the number of orbital
configurations. Red squares show the results of the optimized CI
approach, while black circles show the results of the conventional CI
approach, where the CI configurations were selected by fixing the
number of conduction states (nC = 9) and varying the number of
valence states (nV = 1–20). The FCI correlation energy (obtained by
including all the configurations in the active space) is shown by a
horizontal arrow.

(This figure is in colour only in the electronic version)

number of orbital configurations NOC included in the CI basis
set. The correlation energy is defined here as EGS(NOC) −
EGS(1). We find that the OCI method converges much faster
with the number of configurations than the conventional CI
method. For example, five optimized orbital configurations
(NOC = 5) give the bi-exciton ground-state energy with
accuracy comparable to ∼450 non-optimized configurations.
Similarly, ten optimized configurations (NOC = 10) are
equivalent to ∼1000 non-optimized configurations. Thus, the
OCI approach requires about two orders of magnitude fewer
configurations than the conventional CI approach to achieve
similar accuracy. If iterative diagonalization methods are used
to find the lowest-energy eigenstates of the CI Hamiltonian, the
computational cost scales with the number of configurations
as N2

OC. As a result, the OCI method would be four orders
of magnitude more efficient than the conventional CI method,
if the set of optimized configurations was known in advance.
The simulated-annealing search algorithm requires ∼10 000
steps to find the set of optimized configurations (figure 2), thus
making the computational cost of the OCI method comparable
to that of the conventional CI approach.

However, the efficiency of the search method can be
dramatically increased by taking advantage of the above-
mentioned property that the set of NOC + 1 optimized config-
urations includes the set of NOC optimized configurations (see
table 2). This property suggests the following recursive search
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algorithm: if the set of n optimized configurations is known,
the set of n + 1 optimized configuration can be determined by
searching the space of orbital configurations for the additional
configuration that minimizes the energy of the n + 1 set. This
search can be performed using the simulated-annealing algo-
rithm or other heuristic algorithms.

The advantage of the recursive search method is that the
dimension of the search space is only ∼MOC (the total number
of orbital configurations in the active space), which is orders
of magnitude smaller than the dimension of the simulated-

annealing search space
( MOC

NOC

)
. The smaller dimension of the

search space more than compensates for the need to search
the configuration space at each step n = 1, . . . , NOC of the
recursive algorithm. As a result, the recursive search method
is significantly faster than either the simulated-annealing OCI
approach or the conventional CI diagonalization approach.
For example, in the case of the bi-exciton ground state, we
found that the recursive search algorithm is almost one order
of magnitude faster than the simulated-annealing OCI or the
conventional CI algorithm.

The OCI method can be generalized to find higher-energy
excited states by minimizing the sum of the energies of the
first several CI states. For example, if the m lowest-energy
bi-exciton states are sought, one can determine the optimized
set of configurations that minimize the energy E = ∑m

i=1 Ei ,
where Ei is the energy of the i th lowest bi-exciton state. In this
case, the computational cost of the OCI method scales linearly
with m.

In conclusion, we have presented a theoretical approach
to the selection of the ‘best’ configurations for configuration
interaction calculations of electronic excitations in nanostruc-
tures. We find that the set of optimized configurations is dif-
ferent from what one would expect based on the single-particle
energy ladder. Our method makes it possible to identify a pri-
ori the configurations that are relevant to describe electronic
excitations in nanostructures. When coupled with an efficient
search algorithm, it also provides a more efficient computa-
tional approach compared to standard CI calculations.
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